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Abstract

We propose a fundamentally new concept to the treatment of material instabilities and localization phenomena

based on energy minimization principles in a strain-softening elastic–plastic bar. The basis is a recently developed

incremental variational formulation of the local constitutive response for generalized standard media. It provides a

quasi-hyperelastic stress potential that is obtained from a local minimization of the incremental energy density with

respect to the internal variables. The existence of this variational formulation induces the definition of the material

stability of inelastic solids based on convexity properties in analogy to treatments in elasticity. Furthermore, locali-

zation phenomena are understood as micro-structure development associated with a non-convex incremental stress

potential in analogy to phase decomposition problems in elasticity. For the one-dimensional bar considered the two-

phase micro-structure can analytically be resolved by the construction of a sequentially weakly lower semicontinuous

energy functional that envelops the not well-posed original problem. This relaxation procedure requires the solution of

a local energy minimization problem with two variables which define the one-dimensional micro-structure developing:

the volume fraction and the intensity of the micro-bifurcation. The relaxation analysis yields a well-posed boundary-

value problem for an objective post-critical localization analysis. The performance of the proposed method is demon-

strated for different discretizations of the elastic–plastic bar which document on the mesh-independence of the results.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Application of standard numerical solution methods to the simulation of localization phenomena in

strain-softening elastic–plastic solids typically yields non-objective post-critical results. The reason of this
well-known effect is the ill-posedness of the incremental boundary-value problem that demotes a subse-

quent standard analysis to be physically meaningless. In the context of finite element formulations the

crucial mesh-dependence was pointed out for example by Crisfield (1982), de Borst (1987) and Belytschko

et al. (1988). A broad spectrum of higher-order theories and associated numerical methods has been
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developed in the last decades in order to describe in an objective format experimentally observed localized

failure mechanisms with highly narrow concentrations of inelastic deformation patterns such as reported in

Nadai (1950) and Vardoulakis (1977). These regularization techniques enhance standard theories by in-

troducing different length scale parameters which are often considered to be related to the micro-structure
of the material. Representatives are viscoplastic regularization techniques, non-local continuum theories,

micro-polar Cosserat theories and the modelling of discontinuities (see for example Needleman, 1988; de

Borst and Sluys, 1991; Ba�zzant and Lin, 1988; M€uuhlhaus and Aifantis, 1991; Larsson et al., 1993; Sim�oo et al.,
1993; Miehe and Schr€ooder, 1994). Reviews of this very broad and highly active field of research are pro-

vided in M€uuhlhaus (1995) and de Borst (1987), see also the references cited therein.

In this paper we propose a fundamentally new approach to the treatment of material instabilities and

localization phenomena in a strain-softening elastic–plastic bar that bases on the minimization of incre-

mental energies. The concept offers the following two perspectives to a localization analysis. Firstly,
statements of the material stability of inelastic solids are based on the convexity condition of incremental

energy functions in analogy to treatments in finite elasticity. Secondly, localization phenomena are inter-

preted as micro-structure developments associated with non-convex incremental energy functions in

analogy to elastic phase-decomposition problems. The micro-phases arising can be resolved by the relax-

ation of non-sequentially weakly lower semicontinuous energy functionals based on the convexification of

the incremental stress potential function. The relaxed problem provides a well-posed formulation for an

objective analysis of localizations. The framework developed yields a mathematically well-posed alternative

to the above mentioned classical techniques.
The setting up of a general incremental variational formulation of inelasticity for the one-dimensional

model frame in Section 2 follows closely the recent papers (Miehe, 2002; Miehe et al., 2002) which are

conceptually in line with the work of Ortiz and Repetto (1999). It focuses on a general internal variable

formulation of inelasticity for generalized standard media governed by only two scalar functions: the energy

storage function and the dissipation function. The general set up can be related to the works of Biot (1965),

Ziegler (1963), Germain (1973), Halphen and Nguyen (1975), see also the recent treatments (Maugin, 1992;

Nguyen, 2000). In Section 2, we lay out a distinct incremental variational formulation for this class of

materials. Here, a quasi-hyperelastic stress potential at discrete times is obtained from a local minimization
problem of the constitutive response. The underlying basic approach is the determination of a path of

internal variables in a finite increment of time that minimizes a generalized incremental work expression. As

already pointed out by Martin (1975), such an extremal path induces the existence of a potential for the

stress. The minimization path within the time increment under consideration is approximated by a de-

formation-driven constitutive integration algorithm for the internal variables. The incremental algorithmic

parameter associated with this integration scheme is then considered to be the variable of the discretized

minimization problem.

Key advantage of the variational formulation outlined is the opportunity to define the stability of the
incremental inelastic response in terms of terminologies used in elasticity. It means in particular that

classical definitions of localized failure as outlined in Thomas (1961), Hill (1962) and Rice (1976) can be

related to the convexity conditions of the above introduced incremental stress potential in analogy to

treatments in finite elasticity (see for example Dacorogna, 1989; Krawietz, 1986; Ciarlet, 1988; Marsden

and Hughes, 1994; �SSilhav�yy, 1997). Here, a necessary condition for the existence of minimizers forces the

energy functions to be sequentially weakly lower semicontinuous. In the scalar case a sufficient condition is

the convexity of the stored elastic energy function. This general result was at first obtained by Tonelli (1921)

and then generalized by DeGiorgi (1968), Rockafellar (1970), among others. The above outlined variational
formulation enables us to extend these results to the incremental response of inelasticity. It is concerned to

be stable if the incremental stress potential is convex. A first approach to the definition of material stability

based on convexity properties of an incremental stress potential can be found in Runesson and Larsson

(1993). Within the framework of a standard dissipative material, they constructed a variational principle
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and pointed out that in case of strain-softening plasticty the loss of material stability is associated to non-

convex incremental energy functions.

As a consequence, we consider localized material response as a phase decay of the homogeneous strain

state on the macro-scale into a two-phase micro-structure. With regard to a further analysis of this phe-
nomenon, the incremental variational setting opens up the opportunity to apply the concept of relaxation

of non-convex variational problems to inelastic solids. A relaxation is associated with a convexification of

the non-convex energy function by constructing its convex envelope. The convexification is concerned with

the determination of the micro-structure. We refer to Dacorogna (1989), M€uuller (1998) for a sound

mathematical basis.

The structure of the paper is as follows: As a key basis for the subsequent treatment, in Section 2 a

variational formulation of the local constitutive response for normal-dissipative standard materials in

presented by defining an incremental stress potential. Section 3 defines the stability of the material response
in terms of the convexity of the potential. Section 4 then outlines a relaxation technique for non-convex

localized material behavior that determines the evolution of the micro-structure. In Section 5 we comment

on the global variational formulation for the incremental boundary-value problem of the inelastic solid.

The performance of the relaxation analysis proposed is demonstrated for different discretizations of the

elastic–plastic bar which report on the objectivity of the results.

2. Variational formulation of the local constitutive response

The setting up of a general incremental variational formulation of inelasticity for the one-dimensional

model frame in this section follows closely the recent papers (Miehe, 2002; Miehe et al., 2002). We adapt the

first one to a one-dimensional model frame.

2.1. Internal variable formulation of inelasticity

Let e 2 R be the strain governing the homogeneous deformation of a material at time t 2 Rþ
0 . Focusing

on purely mechanical problems, the local constitutive response x 2 B is assumed to be physically con-

strained by the so-called Clausius–Planck inequality for the internal dissipation

D :¼ r _ee � _wwP 0; ð1Þ
where r denotes the stress. The local energy storage is governed by an energy storage function

w : R� R� R ! Rþ
0 that depends on the strain e 2 R and a generalized vector I 2 R� R of internal

variables. Insertion into (1) yields the constitutive equation for the stress

r ¼ oewðe;IÞ ð2Þ
and the reduced dissipation inequality

D ¼ F 	 _IIP 0 with F :¼ �oIwðe;IÞ; ð3Þ
where F 2 R� R is a generalized vector of internal forces conjugate to the internal variables I. The

evolution _II of the internal variables is governed by a scalar dissipation function / : R� R ! R. This
function is assumed to depend on the flux _II of the internal variables. Using the definition of the sub-

differential, it determines the evolution of I in time by the constitutive differential equation

0 2 oIwðe;IÞ þ o _II/ð _IIÞ with Ið0Þ ¼ I0 ð4Þ
often referred to as Biot�s equation of standard dissipative systems (see Biot, 1965; Nguyen, 2000). The two
constitutive equations (2) and (4) determine the stress response of a normal dissipative material in a
deformation-driven process where the strain e is prescribed. Based on the definition (3)2 of the internal
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forces F, one introduces a dual dissipation function /
 depending on the forces by the Legendre–Fenchel

transformation (see Rockafellar, 1970)

/
ðFÞ ¼ sup
_II

fF 	 _II� /ð _IIÞg: ð5Þ

The definitions (3)2 and (5) induce the alternative representation

_II 2 oF/
ðFÞ ð6Þ

of Biot�s equation (4)1. The internal forces are assumed to be bounded by a convex set E 2 R� R. The level

set function f : R� R ! Rþ
0 with the threshold c 2 Rþ

0 is assumed to describe the convex domain

E :¼ fFjf ðFÞ6 cg: ð7Þ

The level set function is positively homogeneous of degree one f ðhFÞ ¼ hf ðFÞ. For a known elastic do-

main (7) the dissipation function for a rate-independent model of inelasticity may be defined by the classical

principle of maximum dissipation. It defines the dissipation function by the constrained maximum problem

/ð _IIÞ ¼ sup
F2E

fF 	 _IIg; ð8Þ

that can be solved by the Lagrange formulation

/ð _IIÞ ¼ sup
F

fF 	 _II� k½f ðFÞ � c�g: ð9Þ

The Lagrange parameter k is determined by the Karush–Kuhn–Tucker conditions

k P 0; f 6 c; kðf � cÞ ¼ 0: ð10Þ

Observe that (9) may be interpreted as the Legendre–Fenchel transformation of the dual dissipation po-
tential

/
ðFÞ ¼ k½f ðFÞ � c�: ð11Þ

Exploitation of (6) yields the evolution equation for the internal variables

_II ¼ koFf ðFÞ: ð12Þ

It splits the evolution _II of the internal variables into what can be considered as the amount k and the

normal direction oFf of the inelastic flow. Inserting (12) into (9), taking into account the homogeneity of

degree one of the level set function and (10)3 yield the simple form of the dissipation function

/ ¼ ck: ð13Þ

2.2. Incremental variational formulation of inelasticity

In analogy to Miehe (2002) we discuss an integrated version of constitutive equations giving a consistent

approximation of the continuous differential equation (4) in a finite time increment ½tn; tnþ1� 2 Rþ. Key point

is the definition of an incremental stress potential function W depending on the strain enþ1 :¼ eðtnþ1Þ at time
tnþ1 that determines the stress rnþ1 at tnþ1 by the quasi-hyperelastic function evaluation

rnþ1 ¼ oeW ðenþ1Þ: ð14Þ

The function W has to cover characteristics of the storage function w and the dissipation function /. We

consider the variational problem
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W ðenþ1Þ ¼ inf
I

Z tnþ1

tn

½ _ww þ /�dt with IðtnÞ ¼ In: ð15Þ

For a prescribed strain, this problem defines the incremental stress potential function W as a minimum of

the generalized work
R tnþ1
tn

½ _ww þ /�dt done on the material in the time increment under consideration.

Starting with the given initial condition IðtnÞ ¼ In, the minimum problem defines an optimal path of the

internal variables IðtÞ for t 2 ½tn; tnþ1�, including the right boundary value Inþ1 :¼ Iðtnþ1Þ. For a detailed
discussion we refer to Miehe (2002).

2.3. Discrete variational formulation of inelasticity

The numerical formulation of the incremental variational formulation (15) bases on a straightforward

discretization of the evolution equation (12) and the dissipation function (13) in the time interval under

consideration. At first we consider an algorithm that approximates the integration

Inþ1 ¼ In þ
Z tnþ1

tn

koFf ðFÞdt ð16Þ

in a deformation-driven scenario where the strain enþ1 of the material is prescribed and considered to be

given. We approximate the current internal variables

Inþ1 ¼ In þ coFfnþ1 ð17Þ
by an algorithm that is viewed only as a function of the algorithmic incremental parameter

c :¼ knþ1Dt with Dt :¼ tnþ1 � tn: ð18Þ
Due to (10)1, this algorithmic parameter is constrained by the loading cone

c 2 K :¼ fc 2 Rjc P 0g: ð19Þ
Insertion of the update algorithm (17) for the internal variables and the discrete incremental dissipationR tnþ1
tn

/dt ¼ cc into the variational principle (15) induces the function

W hðenþ1; cÞ ¼ wðenþ1;Inþ1ðcÞÞ � wn þ cc: ð20Þ
The discretization of the variational problem (15) then reads

W ðenþ1Þ ¼ inf
c2K

W hðenþ1; cÞ: ð21Þ

Thus the continuous formulation (15) of the incremental variational formulation is approximated by the

formulation (21) that minimizes the function (20) with respect to the algorithmic incremental parameter c
defined in (18). The Karush–Kuhn–Tucker optimality conditions are denoted as

W h
;c P 0; cP 0; W h

;c c ¼ 0: ð22Þ

For the case of inelastic loading c > 0, the solution may be obtained by a Newton algorithm

c ( c � ½W h
;cc�

�1W h
;c : ð23Þ

The iteration is terminated for jW h
;c j6 tol when the minimizing point c
 is found. Having solved the discrete

incremental variational principle (21), we compute the stress based on a straightforward exploitation of the

definitions (14). Taking the derivative of the function (21) with respect to the strain enþ1 at the solution
point c
, due to the necessary condition (22)3 we get the representation of the stress

rnþ1 ¼ W h
;e : ð24Þ
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The sensitivity of the stress with respect to the strain is governed by the algorithmic tangent modulus

Cnþ1 :¼ o2eeW ðenþ1Þ ð25Þ

of the material at time tnþ1. Application of the chain rule and the implicit function theorem finally specifies

the definition (25) of the modulus as

Cnþ1 :¼ W h
;ee � W h

;ec½W h
;cc�

�1W h
;ce: ð26Þ

Observe that the modulus consists of an elastic contribution and a softening part. The latter is the con-

sequence of the internal degrees of the material represented by a change of the internal variables within the

time step under consideration. The solution algorithm for the incremental minimization problem is sum-

marized in Table 1.

3. Stability of the incremental local constitutive response

The incremental variational formulation outlined above for inelastic solids provides a perspective for

distinctive computational treatments of material instabilities based on weak convexity notions. Existence

results for boundary-value problems of finite elasticity are reviewed in Dacorogna (1989), Krawietz (1986),
M€uuller (1998) and �SSilhav�yy (1997). The introduction of the stress potential W in (21) allows an application of

these results to boundary-value problems of the incremental setting of inelasticity. This is achieved by

applying statements on the weak convexity such as poly-convexity, quasi-convexity and rank-1-convexity

of the storage function w of elasticity to the incremental stress potential W of inelasticity. For the one-

dimensional problem under consideration the conditions of poly-convexity, quasi-convexity and rank-1-

convexity coincide with the convexity condition (see Dacorogna, 1989, and the references cited therein).

3.1. Reformulation of the classical convexity condition

As already mentioned, the existence of regular minimizers is ensured if the potential W is a convex

function with respect to the actual strain enþ1. This general result was at first obtained by Tonelli (1921) and
then generalized by DeGiorgi (1968) and Rockafellar (1970), among others. The classical convexity con-
dition reads

W ðneþ þ ð1� nÞe�Þ6 nW ðeþÞ þ ð1� nÞW ðe�Þ ð27Þ

in terms of the fraction 06 n6 1 and for all admissible strains eþ 2 R, e� 2 R. Convexity ensures the in-
ternal part of the functional (57) to be sequentially weakly lower semicontinuous (s.w.l.s.) (see Dacorogna,

1989)

Table 1

Solution algorithm for the incremental minimization problem

1. Initialize internal variables I ¼ In and c ¼ 0

2. If W h
;c > �tol set potential, stress and tangent modulus

W ¼ w � wn, rnþ1 ¼ w;e, Cnþ1 ¼ w;ee

3. Update internal variables I ¼ In þ coFfnþ1
4. Compute derivatives W h

;c and W h
;cc and check tolerance. If jW h

;c j < tol go to 6

5. Update incremental plastic multiplier c ( c � ½W h
;cc�

�1W h
;c and go to 3

6. Calculate potential, stress and tangent modulus for solution point c


W ¼ W h, rnþ1 ¼ W h
;e , Cnþ1 ¼ W h

;ee � W h
;ec½W h

;cc�
�1W h

;ce
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W convex () Iðunþ1Þ ¼
Z
B

W ðenþ1ÞdV s:w:l:s: ð28Þ

This is considered to be the essential property for the existence of sufficiently regular minimizers of the

variational problem (57). For further details of existence theorems in elasticity we refer to Ciarlet (1988),

Dacorogna (1989), Marsden and Hughes (1994), �SSilhav�yy (1997) and the references cited therein. The

classical convexity inequality (27) represents a superordinate criterion that requires the convexity of the

reduced incremental potential function in the whole domain of definition. However, the incremental stress

potential W may consist of convex and non-convex ranges. In order to detect whether W is convex for a
given strain enþ1 we consider the actual strain enþ1 to be described by an interpolation between two strains eþ

and e�

enþ1 :¼ neþ þ ð1� nÞe�: ð29Þ
Eq. (29) can also be regarded as a compatibility condition that needs to be satisfied by the strains eþ and e�.
For the one-dimensional problem under consideration we introduce the appropriate ansatz

e� :¼ enþ1 � nd and eþ :¼ enþ1 þ ð1� nÞd ð30Þ
that parametrizes eþ and e� in terms of the variables n and d. For the sake of brevity in what follows we

summarize these two variables in the vector

c ¼ ½n; d�T: ð31Þ
The variable d is denoted as the intensity d of the micro-bifurcation and n as the volume fraction of the
phase (þ). Note that these variables are restricted to be elements of the domain

C :¼ fcj06 n6 1; d P 0g: ð32Þ

Insertion of (29) and (30) into the right part of the classical convexity inequality (27) yields the minimi-

zation function

W
hðenþ1; cÞ ¼ nW ðeþÞ þ ð1� nÞW ðe�Þ: ð33Þ

The definition (33) induces a reformulation of the classical convexity condition (27). The strain enþ1 is a
convex point of the incremental stress potential W , if the minimum of the function W

hðenþ1Þ with respect to
the variables n and d equals the potential W ðenþ1Þ

W ðenþ1Þ ¼ inf
c2C

fW hðenþ1; cÞg: ð34Þ

Depending on whether condition (34) is satisfied, the strain enþ1 lies in a convex or in a non-convex range of
the incremental potential function W . Obviously, the alternative convexity condition (34) is only fulfilled if

the minimizing variables are n 2 f0; 1g or d ¼ 0. In these cases one or both micro-strains eþ or e� are

identical to the macroscopic strain enþ1.

3.2. Accompanying check of the convexity condition

The check of convexity condition (34) requires the solution of a non-linear optimization problem in

order to detect the minimizing variables c
 ¼ ½n
; d
�T. To avoid the expensive solution of (34), we consider
an equivalent convexity inequality by determination of the Gâateaux derivative

d

dn
½W ðneþ þ ð1� nÞe�Þ�n¼0 6

d

dn
½nW ðeþÞ þ ð1� nÞW ðe�Þ�n¼0 ð35Þ
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of the classical convexity condition (27) with respect to the volume fraction n. Taking into account the

ansatz (30) for the micro-strains eþ and e�, we end up with the so-called Weierstrass inequality

W ðenþ1Þ þ ~ddrðenþ1Þ6W ðenþ1 þ ~ddÞ; ð36Þ
with ~dd 2 Rþ

0 . Fig. 1 shows an application of the Weierstrass inequality to a non-convex incremental stress

potential W at enþ1. The incremental stress potential W ðenþ1 þ ~ddÞ has to be smaller than the extrapolated

value W ðenþ1Þ þ ~ddrðenþ1Þ. Note that it is not sufficient to check the so-called infinitesimal convexity of

W ðenþ1Þ that is related to the positive second derivative W;eeðenþ1Þ. Even if the second derivative was positive,
the convexity inequality (34) might not be satisfied (see Figs. 1 and 2). Based on (36) the accompanying

check of the convexity condition is performed in the sense

W ðenþ1 þ ~ddÞ � ~ddrðenþ1Þ
PW ðenþ1Þ : enþ1 is a convex point

< W ðenþ1Þ : enþ1 is not a convex point

�
ð37Þ

Fig. 1. Weierstrass inequality. For a given actual strain enþ1 the incremental stress potential W ðenþ1 þ ~ddÞ is smaller than the extra-

polated value W ðenþ1Þ þ ~ddrðenþ1Þ. As a consequence, the strain enþ1 is not a point of convexity.

Fig. 2. Convexity of the stress potential. For a given actual strain enþ1 the value of the incremental stress potential W is greater than the

minimizing combination of the potentials W ðeþÞ and W ðe�Þ in the corresponding micro-phases. As a consequence, the convexity

condition (34) is not satisfied and the incremental potential W is not convex.
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for some ~dd. If the accompanying evaluation of (36) indicates the loss of convexity, a phase decomposition of
the macroscopic strain enþ1 into the two micro-strains eþ and e� occurs. According to (34), the micro-strains

which minimize the volume average W
h
of the potentials are described by the variables c
 ¼ ½n
; d
�T.

3.3. Mechanical interpretation of convexity

In the context of phase transitions the convexity condition (34) allows an instructive mechanical in-

terpretation: According to (29) the strain enþ1 can be regarded as a homogenization of the two strains e�

and eþ. The reformulated convexity condition (34) says that the homogeneous deformation state enþ1 is
stable as long as no combination of two phases (þ) and ()) exists that possesses a lower energetic level

nW ðeþÞ þ ð1� nÞW ðe�Þ < W ðenþ1Þ: ð38Þ
Fig. 2 shows the shape of a non-convex incremental stress potential W . Obviously, the incremental potential

W ðenþ1Þ is greater than the interpolation of the incremental potentials W ðeþÞ and W ðe�Þ corresponding to
the two phases (þ) and ()). As a consequence, the homogeneous deformation state is not stable and de-

composes into the micro-strains eþ and e�. These two strains described in terms of the ansatz (30) minimize

the function W
h
with respect to the intensity d and the volume fraction n.

4. Relaxation of the non-convex constitutive response

Key advantage of the variational formulation for the constitutive response is the opportunity to apply
the concept of relaxation of non-convex variational problems to strain-softening inelastic solids. In the case

of a non-convex incremental potential W , an energy minimizing micro-structure develops. A relaxation is

associated with a convexification of the non-convex function W by constructing its convex envelope WC as

discussed below. The convexification is concerned with the determination of a micro-structure arising. We

refer to Dacorogna (1989), �SSilhav�yy (1997) and M€uuller (1998) for a sound mathematical basis. In this section
we present, based on the general concept of relaxation, a comprehensive approach to the treatment of

localization.

4.1. Convexification of the incremental potential

If the incremental potential function W ðenþ1Þ is not convex in the sense of (36), the functional I defined in
(28) is not sequentially lower semicontinuous. As a consequence, the minimum of the incremental

boundary-value problem (57) is not attained. Following Dacorogna (1989) we consider a relaxed functional

ICðunþ1Þ ¼
Z
B

WCðenþ1ÞdV ; ð39Þ

where the non-convex integrand W is replaced by its convex envelope WC. The convexified function

WCðenþ1Þ ¼ inf
c2C

fW hðenþ1; cÞg ð40Þ

is defined by the above discussed minimization problem that appears in the convexity condition (34). The

convexified potential is identical to W
hðenþ1; c
Þ which characterizes the volume average of the potentials in

the micro-phases (þ) and ()). The first and second derivatives of the convexified function define the relaxed
stress and the tangent modulus

�rrnþ1 :¼ oeWCðenþ1Þ and Cnþ1 :¼ o2eeWCðenþ1Þ: ð41Þ
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The crucial point of the convexification analysis lies in the solution of the optimization problem (40) that

yields the variables c
 ¼ ½n
; d
�T characterizing the micro-strains eþ and e�.

4.2. Numerical solution of the minimization problem of relaxation

In this section we comment on the numerical solution of the minimization problem (40). If the Weier-

strass inequality (36) is not satisfied, two variables 0 < n
 < 1 and d
 > 0 exist which minimize the function

W
h
defined in (33). The necessary condition of the minimization problem is

W
h
;c ¼ 0: ð42Þ

As the minimizing function W
h
is non-convex with respect to c, a standard Newton iteration scheme for

arbitrary initial values cannot be applied. We will comment on this peculiarity in Section 6. Therefore, we at

first discretize the admissible range of the volume fraction and the intensity of the micro-bifurcation and

filter out the minimum

c
ij ¼ argfmin
cij2C

fW hðenþ1; cijÞgg with cij ¼ ½iDn; jDd�T ð43Þ

for given increments Dn 2 Rþ, Dd 2 Rþ and i 2 N, j 2 N. The discrete minimizing combination then serves

as a starting value c
ij for the Newton update scheme

c ( c� ½W h
;cc�

�1½W h
;c�: ð44Þ

The Newton iteration is terminated for

kW h
;cðenþ1; c
Þk < tol; ð45Þ

when c
 is considered to be the solution of (40). The algorithm for the numerical solution of the minimi-

zation problem of the convexification analysis is summarized in Table 2.

4.3. Numerical computation of the relaxed stress and tangent modulus

The relaxed stress and the tangent modulus are obtained by straightforward evaluation of the derivatives

(41) of the convexified stress potential (40). The first derivative of (40) with respect to the strain enþ1 at the
solution point c
 reads

oeWC ¼ W
h
;e þ ½W h

;c�½c;e�: ð46Þ

The last term vanishes due to the necessary condition (42) of the minimization problem. Thus we identify

the relaxed stress

�rrnþ1 ¼ W
h
;e: ð47Þ

Table 2

Solution algorithm for the minimization problem of convexification

1. For a pattern of combinations cij ¼ ½iDn; jDd�T filter out the minimum

c
ij ¼ argfmincij2CfW
hðenþ1; cijÞgg

2. For the initial value c
ij initialize Newton scheme

c ( c� ½W h
;ccðenþ1; cÞ�

�1W
h
;cðenþ1; cÞ

that is terminated if jW h
;c
 j < tol when c
 is considered to be the solution point
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The second derivative of the convexified incremental stress potential reads

o2eeWC ¼ W
h
;ee þ ½W h

;ec�½c;e�: ð48Þ

The sensitivity of c with respect to the macro-strain is obtained by taking the linearization of (42) yielding

the expression

c;e ¼ �½W h
;cc�

�1½W h
;ce�: ð49Þ

Insertion into (48) finally specifies the definition (41)2 of the relaxed tangent modulus as

Cnþ1 ¼ W
h
;ee � ½W h

;ec�½W
h
;cc�

�1½W h
;ce�: ð50Þ

Observe that the macro-modulus consists of the volume average of the micro-moduli and a softening part.

The latter is the consequence of the development of the micro-phases. The derivatives of the minimizing

function W
h
needed in the above outlined treatments are summarized in Appendix A.

4.4. Mechanical interpretation of convexification

4.4.1. Relaxed stress and tangent modulus

The loss of convexity of the stress potential W indicates the loss of stability of the homogeneous de-

formation state enþ1 and initializes the development of micro-structures. The volume average

neþ þ ð1� nÞe� of the micro-strains coincides with the homogeneous strain enþ1. The form of the micro-

phases is such that they minimize the homogenized incremental work

WCðenþ1Þ ¼ min
eþ ;e�

fnW ðeþÞ þ ð1� nÞW ðe�Þg ð51Þ

with respect to the intensity d of the micro-bifurcation and the volume fraction n. The variable n can be

understood as a probability measure in the sense of Young (1921) (see also Carstensen and Roub�ıı�ccek,
2000). The necessary conditions for the solution of the above minimization problem read

W
h
;d ¼ nð1� nÞ½rðeþÞ � rðe�Þ� ¼ 0;

W
h
;n ¼ W ðeþÞ � W ðe�Þ � d½nrðeþÞ þ ð1� nÞrðe�Þ� ¼ 0:

)
ð52Þ

The first condition (52)1 states that the stresses in the micro-phases (þ) and ()) are in equilibrium. This
allows the conclusion from (52)2 that the slope of the convex envelope is constant and identical to the

micro-stress. Some algebraic manipulations confirm that the relaxed tangent modulus equals zero

�rrnþ1 ¼ rðeþÞ ¼ rðe�Þ and Cnþ1 ¼ 0: ð53Þ

Fig. 3 depicts the shape of a non-convex potential function and its convex envelope that is described by the

micro-strains e� and eþ in terms of the volume fraction n
 and the micro-shearing d
. In the non-convex

range e� < enþ1 < eþ the non-convex incremental potential function W is replaced by its convex envelope

WC. The necessary conditions (52) uniquely characterize the shape of the convex envelope WC as depicted in

Fig. 3. The convexified incremental potential WCðenþ1Þ is obtained by a fictitious projection of the non-

convex incremental potential W ðenþ1Þ onto the convex envelope. As a consequence, the convexification

analysis yields a perfectly plastic stress response in the increment considered. As plotted in Fig. 4, the
relaxed stress �rrnþ1 at enþ1 is associated with a Maxwell-type line similar to classical treatments in phase-

decompositions of real gases (see e.g. Rowlinson, 1958; Krawietz, 1986; Dacorogna, 1989).
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4.4.2. Transition to the next time increment

As pointed out above the convexification analysis represents a two-scale homogenization analysis of two

micro-phases (þ) and ()) which arise because of an instability of the homogeneous deformation state. As a
consequence, in each phase different internal variables Iþ and I� emerge. After the transition to the next
time increment the constitutive response at the beginning of the new increment must coincide to that at the

end of the previous increment. This trivial statement induces the separate update of the internal variables

for each phase

Iþ
n ( Iþ and I�

n ( I�: ð54Þ

Furthermore, for the limiting case enþ1 ! en the consistency condition (52)2 must be satisfied for the pre-

vious constitutive variables, i.e. W
h
;n ¼ W ðeþn Þ � W ðe�n Þ � dn�rrn ¼ 0. In contrast to the original definition (20)

of the incremental stress potential we then have to consider the alternative definitions

W hðeþ; cÞ ¼ wðeþ;IþðcÞÞ � wnðeþn ;Iþ
n Þ þ cc þ dn�rrn;

W hðe�; cÞ ¼ wðe�;I�ðcÞÞ � wnðe�n ;I�
n Þ þ cc

�
ð55Þ

of the potentials in the micro-phases (þ) and ()).

Fig. 4. Convexification of a non-convex stress potential. Due to the constant slope of the convex envelope WC the relaxed stress �rrnþ1 is

constant in the non-convex range. As a consequence, the convexification of the non-convex incremental stress potential (- - -) leads to

an incrementally perfectly plastic response (––).

Fig. 3. Convexification of a non-convex stress potential. At enþ1 the incremental stress potential W is not convex (- - -). As a conse-

quence, the macroscopic deformation state enþ1 is not stable and decomposes into two micro-phases (þ) and ()) which describe the

convex envelope (––).
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4.4.3. Recovery of the stable homogeneous state

If the volume fraction n becomes zero or one, only one phase is still present, i.e. e� ¼ enþ1 or eþ ¼ enþ1.
This can be interpreted as the recovery of a stable homogeneous state. Accordingly, we perform the update

of the homogeneous internal variables

In ¼ I� if n < tol or In ¼ Iþ if n > 1� tol ð56Þ
and continue with the homogeneous analysis including the accompanying check of convexity outlined in

Section 3.2. The scheme of the two-phase relaxation procedure is summarized in Table 3.

5. Global incremental variational problem

Based on the variational formulation of the local constitutive response outlined in Section 2, we consider
the subsequent energetic formulation of the incremental boundary-value problem of inelasticity.

5.1. Incremental variational formulation of the convex response

Let u : B� R ! R denote the displacement field of a continuum B � R at a material point x 2 B and

time t 2 R. Then e ¼ u0 is the strain. The incremental potential energy of the elastic–plastic continuum

associated with the increment ½tn; tnþ1� is a function of the displacement field u and has the form

Pðunþ1Þ ¼
Z
B

½W ðenþ1Þ � unþ1~ccnþ1�dV �
Z
oBt

unþ1~rrnþ1 dA: ð57Þ

W is the incremental stress potential function defined in (15), their first and second derivatives are the

current stress and tangent modulus defined in (24) and (25), respectively. ~ccðx; tÞ denotes a given body force

field at x 2 B and ~rrðx; tÞ a given stress field at x 2 oBt on the boundary. As usual, we consider a decom-

position of the surface into a part where the deformation is prescribed and a part where the tractions are
given, i.e. oB ¼ oBu [ oBt and oBu \ oBt ¼ ;. The current displacement field of the inelastic solid is then

determined by the incremental variational principle

Pðu
nþ1Þ ¼ inf
unþ12U

Pðunþ1Þ ð58Þ

Table 3

Algorithm of the two-phase relaxation procedure

1. Homogeneous analysis

Solve incremental minimization problem W ðenþ1Þ ¼ mincfW hðenþ1; cÞg and compute stress and tangent modulus

rnþ1 ¼ oeW ðenþ1Þ and Cnþ1 ¼ o2eeW ðenþ1Þ
2. Loss of material stability

Check convexity of incremental stress potential with Weierstrass inequality

W ðenþ1Þ þ ~ddrðenþ1Þ �W ðenþ1 þ ~ddÞ6 � tol

If W ðenþ1Þ is convex update internal variables In ( I and continue to the next time increment with 1, else go to 3

3. Two-phase relaxation analysis

Solve minimization problem WCðenþ1Þ ¼ mincfW
hðenþ1; cÞg of convexification and compute relaxed stress and tangent modulus

�rrnþ1 ¼ oeWCðenþ1Þ and Cnþ1 ¼ o2eeWCðenþ1Þ
4. Recovery of material stability

Check if volume fraction equals zero or one

n < tol or n > 1� tol

If necessary, update homogeneous internal variables In ( I� or In ( Iþ, respectively, and continue to the next time

increment with 1. Otherwise perform update Iþ
n ( Iþ, I�

n ( I� for each phase separately and continue with 3
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that minimizes the incremental potential energy for an admissible displacement field

u 2 U :¼ fuju ¼ ~uuðxÞ on oBug ð59Þ
associated with prescribed deformations ~uu at x 2 oBu on the boundary.

5.2. Incremental variational formulation of the non-convex response

For the case when material instabilities are detected at a point x 2 B we face a non-convexity of the

incremental potential W in some region of the inelastic solid. Then the existence of solutions of (58) is not

ensured, because property (34) is lost. Based on the treatment outlined in Section 4 we then consider a

relaxation of the functional (58)

PCðunþ1Þ ¼
Z
B

½WCðenþ1Þ � unþ1~ccnþ1�dV �
Z
Bt

unþ1~rrnþ1 dA ð60Þ

by replacing the incremental potential W by its convexified counterpart WC defined in (40). Its first and

second derivatives are the current stress �rrnþ1 and the tangent modulus Cnþ1 defined in (41), they may be

considered to be homogenized quantities of the developing micro-structure. The current displacement field
of the elastic–plastic solid is then determined by the relaxed incremental variational principle

PCðu
nþ1Þ ¼ inf
unþ12U

PCðunþ1Þ ð61Þ

that minimizes the relaxed incremental potential energy for the admissible displacement field defined in

(59). The relaxed problem (61) is considered to be the well-posed form of the ill-posed problem (58).

6. Numerical examples

We demonstrate the performance of the above outlined relaxation technique by a numerical example

that is concerned with the computation of the convexified incremental stress response and the objective

simulation of localized failure of a bar in tension. We apply a classical form of rate-independent elasto-

plasticity that incorporates strain-softening.

6.1. Variational formulation of the elastoplasticity model

For the elastoplastic model-problem under consideration the internal variables and the dual internal

forces have the specific form

I :¼ ½ep;A�T and F :¼ ½rp;B�T; ð62Þ
where ep denotes the plastic strain and A a scalar internal variable for the description of the strain-softening.

rp and B are the dual stress-like variables defined in (3)2. The model problem is completed by the definition

of the fundamental constitutive functions w and f for the strain energy and the level set of the elastic
domain, respectively. The elastic response is governed by the strain energy

wðe;IÞ ¼ 1
2
Eðe � epÞ2 þ f½Aþ g expð�A=gÞ� þ 1

2
hA2: ð63Þ

Here, E 2 Rþ denotes the elasticity modulus and f 2 R, g 2 R, h 2 R are softening and hardening pa-
rameters, respectively. The elastic strain is defined by the difference between the total and the plastic strain

ee ¼ e � ep. Exploitation of (2) yields the stress

r ¼ Eðe � epÞ: ð64Þ
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Evaluation of the definition (3)2 leads to the expressions for the thermodynamical internal forces

rp ¼ Eðe � epÞ and B ¼ �f½1� expð�A=gÞ� � hA: ð65Þ

Obviously, r and rp are identical because of the additive split of e into an elastic and a plastic part. We

consider a level set function of the form

f ðFÞ ¼ jrj þ B: ð66Þ

As a consequence of the definition (66) the normal direction has the simple representation

oFf ¼ ½n; 1�T with n :¼ r=jrj: ð67Þ

In what follows we evaluate the discrete variational formulation of inelasticity as outlined in Section 2.3.

Insertion of (67) into the integration algorithm (17) yields the updates

epnþ1 ¼ epn þ cn and Anþ1 ¼ An þ c ð68Þ

of the internal variables. The direction n can be identified with n ¼ ðenþ1 � epnÞ=jenþ1 � epn j. The multiplier c is
obtained by the Newton algorithm (23) that needs the derivatives

W h
;c ¼ �Eðjenþ1 � epn j � cÞ þ f½1� expð�Anþ1=gÞ� þ hAnþ1 þ c;

W h
;cc ¼ E þ f=g expð�Anþ1=gÞ þ h:

�
ð69Þ

Note that (69)1 represents the classical yield condition. If the solution point c
 is found, exploitation of (24)
and (26) yields the formulas for the stress and the tangent modulus

rnþ1 ¼ Eðenþ1 � epnþ1Þ and Cnþ1 ¼ E � E2

E þ f=g expð�Anþ1=gÞ þ h
: ð70Þ

These formulas only hold as long as the incremental stress potential W ðenþ1Þ is convex in the sense of the

convexity condition (34). Otherwise the convexification procedure needs to be performed as outlined in

Section 4.

6.2. Numerical computation of the local convexified stress response

In this section we demonstrate the convexification analysis outlined in Section 4 by means of a numerical

model problem. The set of material parameters governing the energy storage and dissipation functions is
given in Table 4. The parameters are chosen such that they describe a combination of a saturation-type

softening and a linear hardening response. The development of the internal variable B, plotted in Fig. 5,

mirrors the combined softening/hardening behavior. After an initial softening governed by the parameters f
and g the material hardens with the constant slope h. The problem is analyzed by a displacement-driven

solution algorithm by linearly increasing the strain e up to the final value e ¼ 12. The strain increment is set

constant to De ¼ 0:1 for all subsequent computations.

Table 4

Set of material parameters

Elasticity modulus (E) 1.0000

Yield stress (c) 1.0000

Saturation softening (f) )1.1353
Saturation intensity (g) 1.1182

Linear hardening (h) 0.0284
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6.2.1. Comparison of non-relaxed and relaxed response

Firstly, the non-relaxed stress–strain curve is computed based on the constitutive equations summarized
in Section 6.1. As a consequence of the combined softening/hardening response visualized in Fig. 5 the

stress response is non-convex. In Fig. 6a the non-convex stress–strain curve is plotted showing an initially

linear elastic path until the elastic threshold c ¼ 1 is reached. In the post-critical range the stress–strain

curve reflects the prescribed strain-softening behavior depicted in Fig. 5. In order to detect the non-convex

span of the incremental stress potential, within every time increment we perform the accompanying check

of convexity outlined in Section 3.2. We start at the origin of Fig. 6 and proceed on the elastic loading

branch. For enþ1 ¼ 0:2 the convexity condition (34) is not satisfied anymore. Only at enþ1 ¼ 9:6 the in-

cremental stress potential is convex again in the sense of (34). The loss of convexity coincides with the non-
uniqueness of the constitutive material behavior. Fig. 7 visualizes the shapes of the incremental stress

potential W and the stress r for the first two strain intervals ½0; 0:1� and ½0:1; 0:2�. Fig. 7a and b illustrates

the obvious non-convex shapes of the incremental stress potential W in the strain intervals considered. In

the first strain interval ½0; 0:1� the actual strain enþ1 ¼ 0:1 lies in a convex span of the incremental stress

Fig. 6. Stress–strain curves. Visualization of the non-convex and convexified constitutive stress response. For the computation of the

convexified solution within every interval ½en; enþ1� the convexity of the incremental stress potential W is checked and, if necessary,

replaced by its convexified counterpart.

Fig. 5. Combination of softening/hardening response. The development of the internal variable B mirrors the combined softening/

hardening response. After an initial softening governed by the parameters f and g the material hardens with the constant slope h.
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potential W (Fig. 7a). The associated incremental stress–strain diagram in Fig. 7c shows that the actual

strain enþ1 lies below the critical value of 0.1332. In the second strain interval ½0:1; 0:2� the potential W ,

evaluated at enþ1 ¼ 0:2, is non-convex (Fig. 7b) in the sense of convexity condition (34). Consequently, the

stress state rnþ1 is unstable. Also, the associated stress strain diagram in Fig. 7d reveals that the actual

strain enþ1 lies above the critical stress for this increment. The magnified part in Fig. 7b shows the con-

vexification procedure which essentially represents a fictitious projection of the actual strain onto the
convex envelope WC. Accordingly, in Fig. 7d the actual stress is projected onto the critical stress value. This

stress response reflects the incremental snap-through behavior between the micro-strains e� and eþ. As
depicted in Fig. 6a, application of the convexification procedure of Section 4 leads to a stress–strain curve

that shows a typical snap-through behavior between the phases ()) and (þ). Fig. 6b compares the shapes of
the tangent moduli in view of the non-relaxed and relaxed solutions. It turns out that the tangent moduli

diverge considerably in the non-convex span 0:1332 < e < 9:5788.

6.2.2. Details of the convexification procedure

The goal of the subsequent discussion is to report on some details of the convexification analysis. As

mentioned in Section 4.2 the solution of the minimization problem (34) is one crucial task in the context of

the relaxation technique presented. Fig. 8a illustrates the obvious difficulty in view of the optimization

Fig. 7. Shape of the incremental stress potentials and stresses for the first two strain intervals: (a, b) incremental stress potentials W and

(c, d) stresses r for the time intervals ½0; 0:1� and ½0:1; 0:2�, respectively. The magnified pictures reveal the convexity check and the

convexification procedure if needed.
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problem. The topography shows the non-convex function W
hðenþ1; cÞ for the strain enþ1 ¼ 0:2 over the

admissible domain C. Here, the minimizing point c
 ¼ ½0:0071; 9:4456�T is close to the boundary n ¼ 0. This

minimum and its neighborhood is not at all distinctive compared to the whole domain shown. Clearly, if a

standard Newton-type procedure was initialized somewhere within the domain the global minimum would
not be found. Fig. 8b depicts the immediate surrounding of the minimum wanted. The solution is obtained

by application of the strategy presented in Section 4.2. Fig. 9a and b plot the values of the volume fraction n
and the micro-shearing d which determine the convexified solution WCðenþ1Þ. Fig. 9a visualizes the devel-

opment of the volume fraction n during the convexification analysis. From the initial value n � 0 the

volume fraction increases linearly to its final value n ¼ 1. Fig. 9b depicts the path of the micro-shearing d
that represents the difference between the strains in the phases (þ) and ()). During the convexification

analysis the micro-shearing remains constant d ¼ 9:4456. Fig. 10a reflects the evolution of the micro-strains
which mark the initial and final points of the convex envelope, respectively. They remain constant for the
whole non-convex span: eþ ¼ 9:5788 and e� ¼ 0:1332. In Fig. 10b the constant plastic strains eþ

p ¼ 9:4456

Fig. 9. Development of the volume fraction and the micro-shearing: (a) the volume fraction increases linearly from n ¼ 0 to the final

value n ¼ 1 and (b) the constant discrete fluctuation d ¼ 9:4456 determines the distance between the two phases (þ) and ()).

Fig. 8. Topography of function W
h
(a) over the admissible domain C and (b) for the immediate neighborhood of the solution point c
.

The figures visualize the non-convexity of the minimizing function W
hðenþ1; cÞ.
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and e�
p ¼ 0 are visualized. As a consequence, the elastic micro-strains eþ

e ¼ e�
e ¼ 0:1332 are identical

yielding the constant stress response rðeþÞ ¼ rðe�Þ ¼ 0:1332 for the whole non-convex range
0:132 < e < 9:5788.

6.3. Relaxation of a strain-softening elastic–plastic bar

In this section we consider the localization of a strain-softening elastic–plastic bar in tension. Main goal

is the demonstration of the mesh-invariance of the proposed relaxation technique. We consider the strip

depicted in Fig. 11 of length 1. The bar is fixed at its left boundary. In order to point out the mesh-de-

pendence of the non-relaxed formulation we discretize the bar with two elements B1 and B2 for different
lengths j ¼ 0:2=0:4=0:6=0:8=1:0. A localization of the homogeneous boundary-value problem is triggered

by increasing the elastic threshold in the element B1 by 0.1%. The displacement ~uu of the right end is in-

creased in constant increments D~uu ¼ 0:1. In dependence of the deformation Dnþ1 at x ¼ 1� j the constant

strains

e1;nþ1 ¼ Dnþ1=ð1� jÞ and e2;nþ1 ¼ ð~uunþ1 � Dnþ1Þ=j ð71Þ

in the elements B1 and B2 are defined. The displacement Dnþ1 is determined by means of the iterative

Newton–Rapson update scheme

Dnþ1 ( Dnþ1 � K�1r ð72Þ

Fig. 11. Localization of a bar in tension. The test specimen under consideration consists of two parts: B2 with length j and B1 with

length 1� j. In B1 the yield stress c is increased by 0.1%.

Fig. 10. Development of the total and plastic strains in the micro-phases. (a) The total strains eþ, e� do not change during the con-

vexification analysis. (b) Also the plastic micro-strains eþ
p
, e�

p
remain constant in the non-convex span.
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in terms of the residual and the tangent

r :¼ �rrnþ1ðe1;nþ1Þ � �rrnþ1ðe2;nþ1Þ; K :¼ �CCnþ1ðe1;nþ1Þ=ð1� jÞ þ �CCnþ1ðe2;nþ1Þ=j; ð73Þ

where the residual represents the equilibrium condition of the bar. The reverse hat (���) indicates that either
the convex or the convexified quantity is used. The iteration is terminated for jrðD


nþ1Þj < tol where D

nþ1 is

considered to be the solution of (72). Fig. 12a depicts the stress–displacement curves for the different

discretizations mentioned above.

We start at the origin of the diagram and proceed on the elastic loading branch. At the peak of the

displacement curves in Fig. 12a we observe a loss of global structural stability documented by a change of

sign of the tangent K. After the peak the element B1 switches onto a post-critical path while the element

B2 switches back to the elastic unloading path. The non-convex analysis yields the spectrum of equi-

librium paths in Fig. 12a. They document the well-known strong mesh-dependence of the non-objective

post-critical analysis. These post-critical results are physically meaningless. The crucial mesh-dependence
was pointed out for example by Crisfield (1982), de Borst (1987) and Belytschko et al. (1988). The ill-

posed boundary-value problem can be transformed into a well-posed one by means of the relaxation

method suggested in Section 4. The relaxed analysis yields an identical result for all mesh densities. The

mesh-invariant post-critical equilibrium path is documented in Fig. 12b. Fig. 13 shows the course of the

displacement uðxÞ for the non-relaxed and the relaxed stress responses at ~uu ¼ 1:0 for three different dis-

cretizations j ¼ 0:25=0:5=0:75. In Fig. 13a the displacement field of the non-convex stress response is

plotted which documents the dependence on the discretizations. Application of the two-phase relaxation

analysis yields the displacement fields given in Fig. 13b. The zigzag lines represent minimizing sequences
which arise because of the phase-decay of the unstable homogeneous deformation state enþ1 into the

micro-strains eþ and e�. Note that the exact course of the displacement in the non-convex domain B2

cannot be determined, but its probability in terms of the volume fractions n, 1� n of the micro-phases (þ)
and ()), respectively. As a consequence, an effective mesh-invariant displacement field (dotted line) can be

determined. Fig. 14 visualizes the micro-structure development in the localized zone. Due to the loss of

convexity two micro-phases (þ) and ()) occur in the localized elements. For the discretizations

j ¼ 0:25=0:5=0:75 the volume fractions of the white phase (þ) are n � 0:36=0:18=0:13. As a consequence

the global distributions of the two strains eþ and e� are identical. This leads to the objective load–dis-
placement curve.

Fig. 12. Global stress–strain curves of imperfect test specimen: (a) Visualization of the length-dependent stress response for different

choices j within the standard formulation and (b) invariant solution due to the convexification analysis.
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7. Conclusion

We proposed a new approach to the treatment of material instabilities in a strain-softening elastic–

plastic bar based on energy minimization principles associated with micro-structure developments. At first

Fig. 13. Course of the displacement over the length of the bar at ~uu ¼ 1:0. (a) Non-relaxed response: due to the non-convexity of the

stress potential the displacement field uðxÞ differs for different discretizations j yielding a mesh-dependent stress response. (b) Relaxed

response: the phase decay into the micro-strains eþ and e� with the volume fractions n, 1� n leads to the effective mesh-invariant

displacement field (	 	 	) ensuring an objective stress response.

Fig. 14. Micro-strcucture development in localized zone. Due to the loss of convexity two micro-phases (þ) and ()) occur in the

localized elements. For the discretizations j ¼ 0:25=0:5=0:75 the volume fractions of the white phase (þ) are n � 0:36=0:18=0:13. As a

consequence the global distribution of the two strains eþ and e� is identical. This leads to the objective load–displacement curve.
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we outlined an incremental variational formulation of the local constitutive response that includes the

derivation of a quasi-hyperelastic stress potential from a local constitutive minimization problem with

respect to the internal variables. In analogy to treatments in finite elasticity the existence of this variational

formulation allows for the definition of the material stability of a homogeneous solid based on the con-
vexity of the incremental stress potential. The micro-phases arising are resolved by the relaxation of the

non-convex incremental stress potential. Here, the key point is the convexification of the incremental stress

potential that requires the solution of a local minimization problem for a relaxed stress potential with

respect to two variables representing a volume fraction and an intensity of the micro-bifurcation. The

concept of the two-phase relaxation analysis is summarized in Table 3. The performance of the energy

relaxation method proposed was demonstrated by the localization of an elastic–plastic bar that reports on

the mesh-independence of the result.
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Appendix A. Derivatives for the convexification analysis

The first and second derivatives of the minimizing function W
h
needed in the above outlined convex-

ification analysis for the Newton-iteration (44) have the form

W
h
;d ¼ nð1� nÞ½rðeþÞ � rðe�Þ�;

W
h
;n ¼ W ðeþÞ � W ðe�Þ � d½nrðeþÞ þ ð1� nÞrðe�Þ�;

W
h
;nn ¼ 2d½rðe�Þ � rðeþÞ� þ d2½nCðeþÞ þ ð1� nÞCðe�Þ�;

W
h
;dd ¼ nð1� nÞ½nCðe�Þ þ ð1� nÞCðeþÞ�;

W
h
;nd ¼ ð1� 2nÞ½rðeþÞ � rðe�Þ� þ dnð1� nÞ½Cðe�Þ � CðeþÞ�:

9>>>>>>>=
>>>>>>>;

ðA:1Þ

In order to determine the relaxed stress and the relaxed tangent modulus defined in (47) and (50) we need

the derivatives

W
h
;e ¼ nrðeþÞ þ ð1� nÞrðe�Þ;

W
h
;ee ¼ nCðeþÞ þ ð1� nÞCðe�Þ;

W
h
;en ¼ rðeþÞ � rðe�Þ � d½nCðeþÞ þ ð1� nÞCðe�Þ�;

W
h
;ed ¼ nð1� nÞ½CðeþÞ � Cðe�Þ�

9>>>>=
>>>>;

ðA:2Þ

of the minimizing function W
h
. Note that the pure derivatives with respect to the strain e represent the

volume averages of the stresses and tangent moduli in the phases (þ) and ()).
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